US 2021/0031110 Al

images are first filtered, a binary mask is generated, and that
the contour(s) of each object is detected in each image based
on the binary mask generated.

[0058] In some examples, the object pose detector 203
may be further configured to detect a location within the
image representation of each object being held by the user,
in the obtained images. The image representation may
correspond to one or more contours detected as representing
the object being held. The location may correspond to a
generally central point or region with respect to the contour
detected for each object.

[0059] The object detector may be configured to determine
a respective location within the image representations of
each object by calculating an image moment for the pixels
within the contours detected for each non-luminous object.
This may be useful where, for example, the objects are
symmetrical, such as oranges, and so the central points or
regions (e.g. centre of mass) can be calculated relatively
easily. The moments() function in OpenCV® is an example
of a function that may be used for calculating the image
moment of a contour. Generally, an image moment defines
a weighted average of the image pixels’ intensities (which in
this case, is limited to the pixels within the contour) and can
be used to determine a centroid associated with an object.

[0060] Insuch examples, the object pose detector 203 may
be configured to detect a change in pose of the at least two
non-luminous objects based on changes in orientation of a
line joining the locations within the image representation of
each object (relative to some default orientation). The object
detector 202 may be configured to fit a line between the
centre points (or regions) identified for each object and to
track changes in orientation of the line joining the centre
points of each object. The user input generator 204 may be
configured to generate a directional input based on changes
in the orientation of the line joining the centre points of each
object. The line joining the centre-points may be treated in
the same way as the linear representation described previ-
ously in relation to generating a steering or change in
viewpoint command.

[0061] More generally, the object pose detector 203 is
configured to detect changes in relative pose of each object,
so that a corresponding user input can be generated based on
the detected changes in pose.

[0062] FIG. 5 illustrates schematically an example of a
video image 500 in which a user is holding two oranges
502A, 502B as a video games controller. In FIG. 5, oranges
502A and 502B are shown as having respective centre points
504A, 504B. The respective centre points are joined by line
506. The line 506 corresponds to the line that may be tracked
in order to generate a directional input to a video game. The
video game may correspond to a racing game, for example.
For clarity, the user’s fingers are not shown in FIG. 5,
although it will be appreciated that these will likely be
visible and may affect the contour detection as well as any
subsequent calculation of the corresponding centre points.

[0063] The area of the contours detected for each object
and their relative position within the obtained images may
be tracked in the same manners as described previously.
Similarly, the user input generator 204 may be configured to
generate different respective user inputs based on changes in
area and position of at least one of the contours associated
with the objects. For example, a detected forward movement
of the orange in the user’s right hand may correspond to an
‘accelerate’ input, whereas movement of the orange in the

Feb. 4, 2021

user’s left and may correspond to a ‘brake’ input. Alterna-
tively, moving both of the oranges forward or backward may
correspond to an accelerate and brake command respec-
tively.

[0064] Additionally, movement of one or both of the
objects above or below a threshold height may be identified
as corresponding to a pause command. For example, if one
or both of the objects can no longer be detected in the
obtained image, it may be assumed that the player is no
longer engaging with the video game. Alternatively, in such
a case, it may be that the object pose detector 203 reverts to
tracking the single object that can still be detected in the
obtained images. The pose-tracking of the single object may
be performed as described previously in relation to a single-
object controller.

[0065] For objects that are asymmetric in at least one axis,
such as bananas, it may be more likely that the user’s hand
interrupts a complete outline of the object. Hence, the object
pose detector 203 may be configured to detect at least two
contours associated with each object. The object detector
202 may therefore be configured to identity the four largest
contours in the obtained images (or filtered images) as
corresponding to the objects being held by the user. Again,
there may be a prior step of filtering colours not correspond-
ing to the objects from the images and generating a binary
mask of the filtered images.

[0066] The object detector 202 may be configured to fit a
line to each contour (e.g. along its length). The line fitted to
each contour may correspond to a linear representation of
the contour e.g. a line through the centre of the contour (in
x-y). Each object may be associated with two linear repre-
sentations—e.g. a line for each uninterrupted segment of the
object. The object detector 202 may be configured to inter-
polate between the two linear representations generated for
each object, so as to generate a single linear representation
for that object.

[0067] It will be appreciated that, in some examples, it
may be that a single contour is detected for each object, e.g.
where the hand does not cover the front face of the banana
(relative to the camera capturing the images). In such
examples, each object may be associated with a single linear
representation.

[0068] The object pose detector 203 may be configured to
detect a change in pose of the objects being held by the user
based on a change in orientation of a line intersecting the
centres of the linear representations generated for each
object. An example of this is shown in FIG. 6, which
schematically illustrates a video image 600 of two bananas
being used to play a video game. In FIG. 6, the contour of
each banana is shown as contours 602A, 602B, having
corresponding centre points 604 A, 604B, joined by line 606.
Rotation of the line 606 joining the centre points 604A,
604B of each linear representation may be provided as an
input to the user input generator 204, which generates a
corresponding directional input. The directional input may
correspond to a steering or change in viewpoint input, as
described previously. It will be appreciated that in FIG. 6,
the user’s fingers are not shown for reasons of clarity.
[0069] It will be appreciated that, in embodiments where
machine learning is used to detect the objects in the obtained
images (e.g. via a cascade classifier), it may not be necessary
to perform contour detection on the objects. In such embodi-
ments, contour detection may be implicit from the localiza-
tion of the object performed by the trained machine learning

